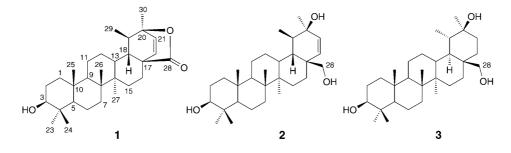
Three New Triterpenoids from Dracocephalum forrestii


by Gan-Peng Li^a)^b), Jing-Feng Zhao^a), Li-Juan Yang ^b), Xiao-Dong Yang^a), and Liang Li^{*a})

 ^a) Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China (phone: +86-871-5031119; fax: +86-871-5035538; e-mail: liliang5758@sina.com)
^b) School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031, P. R.

China

From the whole plant of *Dracocephalum forrestii* (Labiatae), three new and nine known triterpenoids were isolated. The new compounds were identified as $(3\beta,18\beta)$ -20,28-epoxy-3-hydroxyurs-21-en-28-one (1), $(3\beta,18\beta)$ -urs-21-ene-3,20,28-triol (2), and $(3\beta,18\alpha,19\alpha)$ -ursane-3,20,28-triol (3) by means of in-depth spectroscopic analysis.

Introduction. – Dracocephalum forrestii (Labiatae) is a wild perennial plant growing in the regions of Lijiang and Diqing, Yunnan Province, China [1]. It has been used as astringent, diuretic, and antipyretic in traditional Tibetan medicine [2]. No phytochemical study of *D. forrestii* has been reported yet. As part of our investigation on the chemical constituents of this medicine, we isolated twelve triterpenoids from the whole plant of *D. forrestii*, including three new compounds: $(3\beta,18\beta)$ -20,28-epoxy-3-hydroxyurs-21-en-28-one (1), $(3\beta,18\beta)$ -ursane-3,20,28-triol (2), and $(3\beta,18\alpha,19\alpha)$ -ursane-3,20,28-triol (3). Their structures were elucidated by means of spectroscopic techniques. The following known triterpenoids were identified, based on comparison of their spectroscopic data and/or by co-eluting TLC using authentic samples: 28-norlup-20(29)-ene-3 β ,7 β -diol [3], 3β ,28-dihydroxylup-20(29)-ene [4], 3β -hydroxylup-20(29)-en-28-oic acid [5], 3β -hydroxyurs-11-en-28,13 β -olide [6], 28-norurs-12-en-3 β -ol [7], 12,13-epoxy-28-norursane-3 β ,17 β -diol [8], 3β -hydroxyurs-12-ene-28-al [8], 3β -hydroxy-11 α ,12 α -epoxyolean-28,13 β -olide [9], and oleanolic acid.

Results and Discussion. – The dried plant material of *D. forrestii* was extracted with 70% EtOH. The extract was filtered, concentrated, suspended in H₂O, and then succes-

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

sively extracted with petroleum ether, AcOEt, and BuOH. The AcOEt-soluble part was purified by successive column chromatography on silica gel, *RP-18* gel, and *Sephadex LH-20* to afford the twelve triterpenoids.

Compound **1** was obtained as a colorless, amorphous powder. In the FAB mass spectrum, the $[M + H]^+$ peak was observed at m/z 455, in accord with the molecular formula C₃₀H₄₆O₃, as confirmed by HR-ESI-MS and NMR analyses. The IR spectrum revealed the presence of OH groups (3433), a δ -lactone (1729), and a C=C bond (1622 cm⁻¹). The ¹³C-NMR (DEPT) spectrum of **1** (*Table*) revealed 30 signals: seven Me, eight CH₂, and eight CH groups (one oxygenated and two olefinic C-atoms), and seven quaternary C-atoms (including a C=O group and an oxygenated C-atom). These data suggested that **1** was an ursane-type triterpenoid [6][10]. HMBC and HMQC experiments allowed the assignment of all H- and C-atoms. The ¹H-NMR spectrum of **1** further showed a secondary OH function [δ (H) 3.18 (dd, J=4.9, 11.4 Hz)], whose chemical shift and splitting pattern indicated an equatorial 3 β -OH group. The presence of a CH=CH moiety was inferred from an *AB*-type signal at δ (H) 6.09 (d, J=7.5 Hz, 1 H) and 6.06 (d, J=7.5 Hz, 1 H).

Table. ¹³C-NMR Spectroscopic Data of 1–3. Recorded at 125 MHz in CDCl₃; δ in ppm.

Atom	1	2	3	Atom	1	2	3
C(1)	38.9 (<i>t</i>)	38.9 (t)	38.9 (t)	C(16)	25.4 (<i>t</i>)	27.3 (t)	25.5 (t)
C(2)	27.4(t)	27.5(t)	27.9(t)	C(17)	48.1 (s)	37.6 (s)	31.8 (s)
C(3)	79.5(d)	79.4 (d)	79.0(d)	C(18)	47.3 (d)	45.4(d)	47.2 (d)
C(4)	38.8 (s)	38.8 (s)	38.9 (s)	C(19)	44.6(d)	44.2(d)	42.4(d)
C(5)	55.4 (d)	55.4 (d)	55.5 (d)	C(20)	83.7 (s)	74.2(s)	72.2(s)
C(6)	18.2(t)	18.2(t)	18.3(t)	C(21)	133.7(d)	133.0(d)	27.5(t)
C(7)	34.0(t)	34.0(t)	34.0(t)	C(22)	138.4(d)	140.6(d)	35.0 (t)
C(8)	40.6 (s)	40.6 (s)	40.8(s)	C(23)	28.0(q)	28.0(q)	28.0(q)
C(9)	50.4(d)	50.6 (d)	50.8 (d)	C(24)	15.3(q)	15.3(q)	15.4(q)
C(10)	37.1(s)	37.2(s)	37.2(s)	C(25)	16.2(q)	16.3(q)	16.4(q)
C(11)	21.1(t)	21.3(t)	21.3(t)	C(26)	15.7(q)	15.7(q)	15.8(q)
C(12)	27.3(t)	27.3(t)	29.9(t)	C(27)	14.1(q)	14.3(q)	14.3(q)
C(13)	42.2(d)	38.9 (d)	39.7 (t)	C(28)	175.5(s)	65.9(t)	69.0(t)
C(14)	41.2 (s)	41.6 (s)	41.4 (s)	C(29)	19.7(q)	21.9(q)	20.2(q)
C(15)	26.8(t)	26.5(t)	26.6(t)	C(30)	21.0(q)	22.2(q)	24.9(q)

In the HMBC spectrum of **1** (*Fig.*), the signal at δ (H) 1.53 (Me(30)) was correlated with that at δ (C) 133.7 (C(21)); the olefinic signal at δ (H) 6.06 (H–C(21)) was correlated with δ (C) 21.0 (C(30)) and 48.1 (C(17)); the olefinic signal at δ (H) 6.09 (H–C(22)) was correlated with δ (C) 83.7 (C(20)), 47.3 (C(18)), and 175.5 (C(28)), which revealed that the C=C bond was between C(21) and C(22). The observed HMBC correlations between δ (C) 175.5 (C(28)) and δ (H) 1.01 (H–C(18)), 1.62 (H_b–C(16)), and 6.09 (H–C(22)) confirmed an oxo (=O) group at C(28).

The relative configuration of **1** was deduced by a ROESY experiment. NOEs between the signal for Me(30) and H–C(19), and between the signal for Me(29) and H–C(18) indicated a β -oriented Me(29) and an α -oriented Me(30) group.

Compound **2** was obtained as a colorless, amorphous powder. Absorptions for OH (3425) and C=C (1708 cm⁻¹) functions were observed in its IR spectrum. The EI and FAB mass spectra showed a peak at m/z 440 for $[M - H_2O]^+$. Positive HR-ESI-MS showed the $[M - H_2O + H]^+$ signal at m/z 441.3719, in accord with the molecular formula C₃₀H₅₀O₃. The ¹³C-NMR (DEPT) spectrum of **2** (*Table*) revealed 30 signals: seven Me, nine CH₂ (one oxygenated), and eight CH groups (one oxygenated and two olefinic C-atoms), as well as six quaternary C-atoms (one oxygenated). Comparison of the ¹H- and ¹³C-NMR data of **1** and **2** indicated that the latter was also an ursane-type triterpenoid, with the same A-, B-, and C-rings as in **1**.

In the ¹³C-NMR spectrum of **2**, the absence of a δ -lactone C=O group was inferred from upfield shifts for C(20) and C(28) at δ (C) 74.2 and 65.9, respectively. A C=C bond between C(21) and C(22) was established by the HMBC correlations of δ (H) 1.30 (Me(30)) with δ (C) 133.0 (C(21)), of δ (H) 5.98 (H–C(21)) with δ (C) 22.2 (C(30)) and 37.6 (C(17)), and of δ (H) 6.11 (H–C(22)) with δ (C) 74.2 (C(20)), 45.4 (C(18)), and 65.9 (C(28)). The ROESY correlation between Me(30) and H–C(19) indicated that the OH group at C(20) was β -oriented.

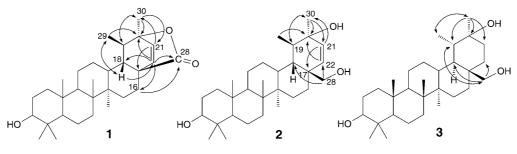


Figure. Key HMBC (\rightarrow) and ROESY (\leftrightarrow) correlations for 1–3

Compound **3** was obtained as a colorless, amorphous powder. In the IR spectrum, absorptions for OH groups were observed at 3449 cm^{-1} . The molecular formula $C_{30}H_{50}O_3$ was deduced by ESI-MS and NMR analyses. The ESI mass spectrum showed a peak at m/z 443 ($[M - H_2O + H]^+$). The ¹³C-NMR (DEPT) spectrum of **3** (*Table*) revealed 30 signals: seven Me, eleven CH₂ (one oxygenated), and six CH groups (one oxygenated), as well as six quaternary C-atoms (one oxygenated). The ¹H- and ¹³C-NMR data of **3** resembled those of **2**, except for ring *E*. Due to the absence of a C=C bond, **3** contained two CH₂ groups in positions 21 and 22, as confirmed by the HMBC correlations of $\delta(H)$ 1.03 (Me(30)) with $\delta(C)$ 27.5 (C(21)), and of both $\delta(H)$ 3.34 (H_b-C(28)) and 4.14 (H_a-C(28)) with $\delta(C)$ 35.0 (C(22)). In the ROESY spectrum, the signal at $\delta(H)$ 0.86 (Me(29)) was correlated with both H_a-C(28) and H_b-C(28), and the signal at $\delta(H)$ 0.86 (Me(29)) was correlated with both Me(30) and H-C(18). This indicated that the OH group at C(20) was β -oriented, and that both Me(29) and Me(30) were α -oriented [11].

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh, 10–40 µm; Qingdao Marine Chemical, Inc.), Sephadex LH-20 (Amersham Pharmacia Biotech.), or Lichroprep RP-18 (43–63 µm; Merck). TLC: Silica gel GF_{254} (Qingdao Marine Chemical, Inc.). Optical rotations: Perkin-Elmer-341 polarimeter. IR Spectra: Nicolet AVATAR-360 spectrometer; KBr pellets; in cm⁻¹. ¹H and ¹³C-NMR Spectra: Bruker AM-400 and Bruker DRX-500 instruments; at 400/100 or 500/125 MHz, resp.; δ in ppm rel. to Me₄Si, J in Hz. FAB-MS: VG Autospec-3000 mass spectrometer; in m/z (rel. %). ESI- and HR-ESI-MS: API Qstar-Pulsar spectrometer.

Plant Material. The plant was collected in Xianggelila County, Yunnan Province, P. R. China, in September 2002, and identified by Mr. *A. Dou* (Diqing Tibetan Hospital). A voucher specimen was deposited at the Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, China.

Extraction and Isolation. The air-dried and powered plant material (4.5 kg) was repeatedly extracted with 70% aq. EtOH (4×101; 48 h each) at ambient temperature. After concentration *in vacuo*, the residue was suspended in H₂O, and then successively extracted with petroleum ether (PE), AcOEt, and BuOH. The AcOEt-soluble extract (270 g) was subjected to CC (2 kg SiO₂; CHCl₃/MeOH 50:1 \rightarrow 50:10) to afford five fractions (Fr.). *Fr.* 2 (3.6 g) was subjected to repeated CC (SiO₂; PE/acetone 10:1 and 5:1) to afford the four known compounds 28-norlup-20(29)-ene-3 β ,7 β -diol (24 mg) [3], lup-20(29)-ene-3 β ,28-diol (16 mg) [4], 3 β -hydroxylup-20(29)-en-28-oic acid (36 mg) [5], and 11 α ,12 α -epoxy-3 β -hydroxyolean-28,13 β -olide (28 mg) [9]. *Fr.* 3 (2.2 g) was subjected to repeated CC (1. SiO₂, PE/acetone 5:1 and 2:1; 2. *RP-18*, MeOH/H₂O 7:3) to afford the three known compounds 3 β -hydroxyurs-11-en-28,13 β -olide (14 mg) [6], 28-norurs-12-en-3 β -ol (8 mg) [7], and 12,13-epoxy-28-norursane-3 β , 17 β -diol (11 mg) [8]. *Fr.* 4 (9.8 g) was subjected to repeated CC (1. SiO₂, AcOEt/acetone 20:1 and 10:1; 2. *RP-18*, MeOH/H₂O 6:4) to afford **1** (85 mg), **2** (10 mg), and the known compound 3 β -hydroxyurs-12-en-28-al (16 mg) [8]. *Fr.* 5 (1.4 g) was subjected to repeated CC (1. SiO₂, AcOEt/acetone 10:1 and 2:1; 2. *Sephadex LH-20*, MeOH) to afford **3** (2 mg) and the known compound oleanolic acid (40 mg).

 $(3\beta,18\beta)$ -20,28-*Epoxy*-3-hydroxyurs-21-en-28-one (1). Amorphous powder. $[a]_D^{17} = +18.0 (c=0.75, CHCl_3)$. IR (KBr): 3433, 2936, 1729, 1622, 1451, 1384, 1073, 1049. ¹H-NMR (500 MHz, CDCl_3)¹): 6.09 (d, J=7.5, H-C(22)); 6.06 (d, J=7.5, H-C(21)); 3.18 (dd, J=4.9, 11.4, H-C(3)); 1.53 (s, Me(30)); 0.96 (s, Me(23)); 0.93 (s, Me(27)); 0.93 (s, Me(26)); 0.84 (d, J=6.9, Me(29)); 0.82 (s, Me(25)); 0.75 (s, Me(24)). ¹³C-NMR: see *Table*. FAB-MS: 455 (100, $[M+H]^+$). HR-ESI-MS: 477.3356 ($[M+Na]^+$, C₃₀H₄₆NaO₃⁺; calc. 477.3344).

 $(3\beta, 18\beta)$ -Urs-21-ene-3,20,28-triol (2). Amorphous powder. $[\alpha]_D^{17} = +29.2 (c = 0.12, CHCl_3)$. IR (KBr): 3425, 2919, 2850, 1708, 1467. ¹H-NMR (500 MHz, CDCl_3)¹): 6.11 (d, J=8.1, H-C(22)); 5.98 (d, J=8.1, H-C(21)); 4.18 (d, J=7.7, H_a-C(28)); 3.20 (dd, J=5.0, 10.9, H-C(3)); 2.81 (dd, J=1.4, 7.7, H_b-C(28)); 1.30 (s, Me(30)); 1.00 (s, Me(26)); 0.97 (s, Me(23)); 0.95 (s, Me(27)); 0.85 (s, Me(25)); 0.77 (s, Me(24)); 0.69 (d, J=6.9, Me(29)). ¹³C-NMR: see Table. FAB-MS: 441 (8, $[M-H_2O+H]^+$). HR-ESI-MS: 441.3719 ($[M-H_2O+H]^+$), $C_{30}H_{49}O_2^+$; calc. 441.3727).

 $(3\beta, 18\alpha, 19\alpha)$ -Ursane-3,20,28-triol (3). Amorphous powder. $[\alpha]_D^{17} = +15.6 \ (c=0.04, \ CHCl_3)$. IR (KBr): 3449, 2927, 2856, 1627, 1460, 1379, 1258, 1077, 1051, 868. ¹H-NMR (500 MHz, $CDCl_3)^1$): 4.14 (dd, $J=3.0, 8.5, H_a-C(28)$); 3.34 (d, $J=8.5, H_b-C(28)$); 3.20 (dd, J=4.8, 11.4, H-C(3)); 1.03 (s, Me(30)); 0.98 (s, Me(26)); 0.97 (s, Me(23)); 0.90 (s, Me(27)); 0.86 (d, J=7.0, Me(29)); 0.84 (s, Me(25)); 0.76 (s, Me(24)). ¹³C-NMR: see Table. ESI-MS: 443 (56, $[M-H_2O+H]^+$), 230 (100).

REFERENCES

[1] Institutum Botanicum Kunmingense Academiae Sinicae Edita, 'Index Florae Yunnanensis', The People's Publishing House of Yunnan, Kunming, 1984, Tomus II, p. 1722.

^[2] J.-S. Yang, C.-J. Chu, 'Diqing Tibetan Medicines', Yunnan Nationalities Press, Kunming, 1989, Part 2, p. 394.

^[3] C. K. Lee, J. Nat. Prod. 1998, 61, 375.

¹) Diagnostic signals only.

- [4] W. F. Tinto, L. C. Blair, A. Alli, W. F. Reynolds, S. Mclean, J. Nat. Prod. 1992, 55, 395.
- [5] S. Siddiqui, F. Hafeez, S. Begum, B. S. Siddiqui, J. Nat. Prod. 1988, 51, 229.
- [6] M. Katai, T. Terai, H. Meguri, Chem. Pharm. Bull. 1983, 31, 1567.
- [7] S. Siddiqui, F. Hafeez, S. Begum, B. S. Siddiqui, J. Nat. Prod. 1986, 49, 1086.
- [8] R. K. Hota, M. Bapuji, Phytochemistry 1994, 35, 1073.
- [9] R. Miranda, J. Nat. Prod. 1990, 53, 182.
- [10] H. Huang, H.-D. Sun, S.-X. Zhao, *Phytochemistry* **1996**, *42*, 1665.
- [11] S. Yahara, N. Ding, T. Nohara, K. Masuda, H. Ageta, Phytochemistry 1997, 44, 131.

Received August 31, 2006